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The following is a way of deriving the quantum mechanical (QM) prediction for the EPR-Bohm experiment [1] with
local measurement functions. We have given in the Appendix a standard QM derivation for comparison. Consider
an “entangled” pair of spin one-half particles, moving freely after production in opposite directions, with particles 1
and 2 subject, respectively, to spin measurements along independently chosen unit directions a and b, which can be
located at a spacelike distance from each other. If initially the pair has vanishing total spin, then the pair’s quantum
mechanical spin state would be the following ”entangled” singlet state:

|Ψn〉 =
1√
2V

{
|n, +〉1 ⊗ |n, −〉2 − |n, −〉1 ⊗ |n, +〉2

}
. (1)

And,

σ · n |n, ±〉 = ± |n, ±〉 (2)

describing the quantum mechanical eigenstates in which the particles have spin “up” or “down” in units of ~ = 2,
with σ being the familiar Pauli spin “vector” (σx, σy, σz).

Quantum mechanically the rotational invariance of the singlet state |Ψn〉 ensures that the expectation values of the
individual spin observables σ1 · a and σ2 · b are

Eq.m.(a) = 〈Ψn|σ1 · a⊗ 1l |Ψn〉 = 〈Ψn|σ1 · a |Ψn〉 = 0

and Eq.m.(b) = 〈Ψn| 1l⊗ σ2 · b |Ψn〉 = 〈Ψn|σ2 · b |Ψn〉 = 0 , (3)

where 1l is the identity matrix and the results are the same for the left handed state.

We will also use the well known identities,

(σ · a) (σ · b) = a · b 1l + iσ · (a× b), (4a)

(σ · b) (σ · a) = a · b 1l − iσ · (a× b), (4b)

which follows from the non-commutativity of products of the Pauli matrices σj (j = x, y, z) defined by the algebra

σjσk = δjk 1l + i εjkl σl , (5)

where δjk is the Kronecker delta, i ≡
√
−1 is the unit imaginary, and εjkl is the Levi-Civita alternating symbol.

It is now possible to construct some manifestly local measurement functions that agree with the eigenvalues of the
observable operators which involve spins being detected by detectors:

A(a, s) := − lim
s→ sgn(a·s)a

[
〈φn|{(σ · a) (σ · s)}|φn〉

]
= ∓1 (6)

and B(b, s) := + lim
s→ sgn(b·s)b

[
〈χn|{(σ · s) (σ · b)}|χn〉

]
= ±1, (7)

where

|φn〉 =
1√
2

{
|n, +〉1|n, −〉3

}
(8)
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and |χn〉 =
1√
2

{
|n, +〉4|n, −〉2

}
. (9)

Here σ · a and σ · b represent the detectors of Alice and Bob with no angular momentum at time of detection, and
σ · s represents the spin of the fermions they receive. The limits express the action of the polarizers at the detection
stations. Note here that |φn〉 and |χn〉 are simple products and are now different particles. And that the original
singlet is now split between two different simple product bra-kets.

Note that these measurement functions represent simultaneous detection processes occurring at two possibly space-
like separated observation stations of Alice and Bob. Although occurring simultaneously, A(a, λ) and B(b, λ) are
independent physical processes that are not subject to the conservation of the initial zero spin angular momentum.
Before proceeding with the product calculation, we will implement a notation simplification, µn = sgn(n · s)n. Upon
using the “product of limits equal to limits of product” rule, leads to the expectation value calculated as follows:

EL.R.(a, b) = lim
n>>1

[
1

n

n∑
k=1

A(a, sk)⊗B(b, sk)

]
(10)

= lim
n>>1

[
1

n

n∑
k=1

[
− lim

s→µa

〈φn|{(σ · a) (σ · s)}|φn〉
]
⊗
[

lim
s→µb

〈χn|{(σ · s) (σ · b)}|χn〉
]

(11)

= −
[

lim
s→µa

{(a · s)}
][

lim
s→µb

{(s · b)}
]

(12)

= −
[

lim
s→µa

(a · s)(s · b)

]
(13)

= −a · b . (14)

Thus we obtain the correct result via a completely local process.

Appendix A: Standard QM Derivation

Considered a pair of spin one-half particles, moving freely after production in opposite directions, with particles
1 and 2 subject, respectively, to spin measurements along independently chosen unit directions a and b, which can
be located at a spacelike distance from each other. If initially the pair has vanishing total spin, then its quantum
mechanical (QM) spin state would be the entangled singlet state

|Ψn〉 =
1√
2

{
|n, +〉1 ⊗ |n, −〉2 − |n, −〉1 ⊗ |n, +〉2

}
, (A1)

with n indicating an arbitrary unit direction, and

σ · n |n, ±〉 = ± |n, ±〉 (A2)

describing the quantum mechanical eigenstates in which the particles have spin “up” or “down” in units of ~ = 2.
Here σ is the familiar Pauli spin “vector” (σx, σy, σz). Our interest lies in comparing the quantum predictions of
spin correlations between the two remote subsystems with those derived from any locally causal theory.

Now, quantum mechanically the rotational invariance of the state |Ψn〉 ensures that the expectation values of the
individual spin observables σ1 · a and σ2 · b are

Eq.m.(a) = 〈Ψn|σ1 · a⊗ 1l |Ψn〉 = 〈Ψn|σ1 · a |Ψn〉 = 0

and Eq.m.(b) = 〈Ψn| 1l⊗ σ2 · b |Ψn〉 = 〈Ψn|σ2 · b |Ψn〉 = 0 , (A3)

where 1l is the identity matrix. The expectation value of the joint observable σ1 · a⊗ σ2 · b, on the other hand, is

Eq.m.(a, b) = 〈Ψn|σ1 · a ⊗ σ2 · b |Ψn〉 = −a · b , (A4)

regardless of the relative distance between the two remote locations represented by the unit vectors a and b. The last
result can be derived using the following calculation for the singlet state,

Eq.m.(a, b) = 〈Ψn|σ · a ⊗ σ · b |Ψn〉 (A5)
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=
1

2

[(
1 0

)
(σ · a)

(
1
0

)(
0 1

)
(σ · b)

(
0
1

)
−
(
0 1

)
(σ · a)

(
1
0

)(
1 0

)
(σ · b)

(
0
1

)
−
(
1 0

)
(σ · a)

(
0
1

)(
0 1

)
(σ · b)

(
1
0

)
+
(
0 1

)
(σ · a)

(
0
1

)(
1 0

)
(σ · b)

(
1
0

)]
, (A6)

=
1

2

[(
1 0

)( az ax − iay
ax + iay −az

)(
1
0

)(
0 1

)( bz bx − iby
bx + iby −bz

)(
0
1

)
−
(
0 1

)( az ax − iay
ax + iay −az

)(
1
0

)(
1 0

)( bz bx − iby
bx + iby −bz

)(
0
1

)
−
(
1 0

)( az ax − iay
ax + iay −az

)(
0
1

)(
0 1

)( bz bx − iby
bx + iby −bz

)(
1
0

)
+
(
0 1

)( az ax − iay
ax + iay −az

)(
0
1

)(
1 0

)( bz bx − iby
bx + iby −bz

)(
1
0

)]
, (A7)

=
1

2
{(−azbz) + (−axbx − ayby) + (−axbx − ayby) + (−azbz)}, (A8)

= −a · b . (A9)
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