gill1109 wrote:And what about in the situation of "epr-simple"? Those hidden variables in your program are not hidden to me.
So? You still do not get it. Hidden variables are hidden in the real experiment being modeled by the simulation.
They are dynamically changing through repeated calls to Python's pseudo-random generator which is a totally deterministic piece of computer code. It's even open source so I know exactly what generator you are using. Fix the initial seed and the whole simulation generates *identical* results on any computers using today's ACM and IEEE standards on floating point arithmetic, etc, as long as the input (two setting sequences) is the same.
The experimenter gets to choose the settings outside of your program. He or she can choose settings which are repeatedly changing, at random. As in real world experiments.
This is insanity as I've told you umpteen times. You can not control the randomness in a real experiment, so "fixing" the randomness in my simulation just because you can is insanity. Garbage in garbage out. You are free do do whatever you like but don't be deceived that what you get is meaningful in anyway whatsoever. Each individual outcome is a result of at least three variables only two of which are truly random. The hidden particle variable (λ), the hidden instrument/detector variable (ζ) and the known detector setting (α). In my simulation, α is picked randomly but is not really a random variable, since it is fixed for each relevant correlation being calculated. It can even be argued that it is not really a variable. In any case, when you "fix" the initial random number seed, you are doing the insane operation of controlling not just α (which you should be able to do, as is done in real experiments), but also λ and ζ, which even though you can control in a simulation, are uncontrollable hidden variables in any real performable experiment. I'm tired of explaining this to you in thread after thread after thread.
There are good reasons why the best experiments use repeated re-randomisation of settings!
Again, experimenters randomize *settings* not hidden variables, and they can randomize them to their hearts content. We are talking about randomization of hidden variables. Bertrand's paradox tells you that any claims that you are randomly sampling the
hidden variables in any experiment is a fantasy. To suggest that by simply randomizing the *settings* you are able to obtain *identical* results is very naive. It is equivalent to the assumption that λ and ζ do not exist or are fixed. This is naive realism. There is no experimental, physical or logical basis for such an assumption. To obtain *identical* results in any of my simulations, you have to fix the random number generator so that you get an identical fixed set of λ and ζ every time. This is insanity as it then becomes completely irrelevant to real performable experiments.
This way, the experimenter (who is now experimenting with your computer programs, treating them as a new physical system, which he studies in his virtual lab) can effectively randomly sample from your sequence of hidden variables. And the mathematician with imagination can do these experiments in his head, and use logical deduction to prove interesting things about the limits of such simulation models!
No. They will be proving uninteresting things about the limits of naive, non-physical and irrelevant derivatives of the simulations. And their proofs will not be relevant at all to any performable experiment or about the real world. If you deliberately make a virtual system violate physical principles, it is disingenuous to call it a "physical system".
Have you run my R code by the way? The results you'll see when running it a number of times, especially when you increase N from 100, give empirical evidence that your claims about randomly sampling disjoint subsets are wrong. A scientist is always open to consideration of new evidence.
That you keep asking me to run your silly R code given everything I've told you about it's irrelevance is the epitome of insanity. Maybe somebody else can have a go at pointing out your errors but I'm done.