New nuclear property perhpas related to dark matter origin

Foundations of physics and/or philosophy of physics, and in particular, posts on unresolved or controversial issues

New nuclear property perhpas related to dark matter origin

Postby wwlad » Sun Aug 05, 2018 5:45 pm

Dear Prof. Andrea Pocar
University of Massachusetts

A new nuclear property (unknown by nuclear theorists) can be connected to dark matter.
The new nuclear property is clearly evidenced in the lithium isotope 3Li6 (see "note" at the page 10 of the paper "Calculation of magnetic moments for light nuclei with number of protons between Z=3 and Z=30"),
where it is written:
Note: Perhaps this influence of the n(o)-flux in the inertia of the nuclei has relation with dark matter, whose origin intrigues the mind of the theorists nowadays.
https://www.scifedpublishers.com/open-a ... nd-z30.pdf


It seems the n(o)-flux, existing in atomic nuclei, is formed by gravitons


The paper is ended with the following comment:


22. Intriguing new experimental findings regarding entanglement

The influence of the n(o)-flux in the inertial behavior of the 3Li6, seen in this paper, is very intriguing, and (as already mentioned in the note of the page 10) perhaps it has relation with the quantum entanglement. There are two speculations which perhaps deserve to be considered.

1- The n(o)-flux seems to be the unique reasonable explanation for the quantum entanglement, because it seems to be improbable it can be a phantasmagoric phenomenon, inasmuch it seems there is no any way to find a physical cause responsible for the entanglement, by considering the current foundations of quantum theory. But besides the observation of its occurrence between photons and between atoms, recently in superconducting electric circuits entanglement of massive objects can also be generated and detected [6]. And it seems do not exist any candidate more reasonable on causing the entanglement between massive objects than the n(o)-flux, because all they are composed by atomic nuclei, where the n(o)-flux is generated.

2- So, as entanglement is generated by massive objects, as new experiments are detecting, then perhaps the influence of the n(o)-flux in the inertia of the nuclei has relation with phenomena which theorists try to explain with the hypothesis of dark matter, whose origin intrigues the mind of the theorists nowadays. As the creation of a microscopic n(o)-flux is induced by rotation of quarks (or singletons, in the case of photons, as will be shown in the paper “On the origin of the mass of the elementary particles”, to be published later), maybe giant n(o)-graviton-fluxes can be induced by the rotation of a galaxy around a giant galaxy. And if galaxies have interaction through a gravitational quantum entanglement via n(o)-flux, then Newton’s gravitational theory cannot be applied for the case of interactions between some very massive objects, as the satellite galaxies of the Milky. In resume, if very, very massive galaxies are able to generate a giant n(o)-flux, then the hypothesis of dark matter can be dismissed for explaining the puzzle.

3- The laws of the electromagnetism were discovered with the experiments made by Faraday. Those laws are consequence of interactions in the microworld, between magnetons and electricitons, which are some among other elementary particles which compose the aether [1,2]. The laws that rule the interaction between magnetons, electricitons, and gravitons, in the behavior of galaxies, were not yet discovered. But their discovery cannot be found if we do not discover, first of all, what are the fundamental laws which rule the interactions of elementary particles of the aether into the structure of quarks and inside the atomic nuclei.



Regards
W Guglinski
wwlad
 
Posts: 4
Joined: Sun Aug 05, 2018 4:02 pm

Return to Sci.Physics.Foundations

Who is online

Users browsing this forum: No registered users and 80 guests

cron
CodeCogs - An Open Source Scientific Library