minkwe wrote:So let me get this straight. You say the three expectation values in Bell's inequality represent separate measurements on three different sets of particles. This is clearly what Watson has done. He shows that within the weakly objective interpretation, which is the one applicable to performable experiments, Bell's inequalities can not be derived. This is also what Adenier showed more than 10 years ago.
Not only that, I've already shown you elsewhere and you agreed that the upper bound for the weakly objective inequality is not the same as that for the strongly objective one, due to different degrees of freedom in the two. Yet you say Adenier is confused. Do you now see that it is you who is confused?
gill1109 wrote:Yes.
See
https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics#Instrumentalist_interpretation
It's just the usual frequentist interpretation of probability. It works pretty well in science. See "Introduction to mathematical statistics and data analysis" by John A Rice. Excellent text book with practical introduction to probability theory and then to statistics.
gill1109 wrote:Watson is wrong, as we already explained. Bell's derivation has got nothing whatsoever to do with what experiments can and can not be done, but about the mathematical models which may or may not "explain" what is observed in experiments which can be done.
minkwe wrote:Could you please explain how "counterfactual definiteness" is relevant to the discussion. Surely you must understand that there are no counterfactual terms in the "weakly objective" interpretation as opposed to the "strongly objective" one. So since your recent paper spends a lot of ink talking about counterfactual definiteness, please explain how it arises in the "weakly objective view".
gill1109 wrote:minkwe wrote:Could you please explain how "counterfactual definiteness" is relevant to the discussion. Surely you must understand that there are no counterfactual terms in the "weakly objective" interpretation as opposed to the "strongly objective" one. So since your recent paper spends a lot of ink talking about counterfactual definiteness, please explain how it arises in the "weakly objective view".
A local hidden variables model allows us to mathematically entertain all outcomes of all conceivable measurements simultaneously. The model says that there is a set Lambda and a probability distribution rho(lambda) on it. For any lambda, all A(a, lambda) and all B(b, lambda) are well defined random variables, for all a and b simultaneously. I can mathematically study their joint probability distribution, their expectation values, whatever I like ...
There is no experiment. I am not modelling an experiment. I am doing mathematics. I derive a relation between A(a, b), A(a, b'), A(a', b), A(a', b') which must hold because these four *mathematical* objects have certain *mathematical* representations: A(a, b) = int A(a, lambda) B(b, lambda) rho(lambda) d lambda.
So if the A(a, b) etc which we "observe" in experiment have as an underlying explanation a hidden variables model, then the same relations must hold between them. And if those relations fail to hold, then obviously the underlying explanation which we had in mind, must have been false.
minkwe wrote:gill1109 wrote:Watson is wrong, as we already explained. Bell's derivation has got nothing whatsoever to do with what experiments can and can not be done, but about the mathematical models which may or may not "explain" what is observed in experiments which can be done.
But I'm explaining to you why it is you who has not understood the issue. The issue is about an interpretation of what the expectation value terms mean. You have picked the "weakly objective" interpretation. Within that interpretation, the inequalities can not be derived. Within that interpretation, there are no counterfactual expectation values.
Do you now want to change your mind? You are free to do that too. All I ask is that whatever you pick, you should be consistent with it and I'll make sure I hold your feet to the fire that you are being consistent.
minkwe wrote:gill1109 wrote:minkwe wrote:Could you please explain how "counterfactual definiteness" is relevant to the discussion. Surely you must understand that there are no counterfactual terms in the "weakly objective" interpretation as opposed to the "strongly objective" one. So since your recent paper spends a lot of ink talking about counterfactual definiteness, please explain how it arises in the "weakly objective view".
A local hidden variables model allows us to mathematically entertain all outcomes of all conceivable measurements simultaneously. The model says that there is a set Lambda and a probability distribution rho(lambda) on it. For any lambda, all A(a, lambda) and all B(b, lambda) are well defined random variables, for all a and b simultaneously. I can mathematically study their joint probability distribution, their expectation values, whatever I like ...
There is no experiment. I am not modelling an experiment. I am doing mathematics. I derive a relation between A(a, b), A(a, b'), A(a', b), A(a', b') which must hold because these four *mathematical* objects have certain *mathematical* representations: A(a, b) = int A(a, lambda) B(b, lambda) rho(lambda) d lambda.
So if the A(a, b) etc which we "observe" in experiment have as an underlying explanation a hidden variables model, then the same relations must hold between them. And if those relations fail to hold, then obviously the underlying explanation which we had in mind, must have been false.
So now you are picking the strongly "objective interpretation". Do you now see that it is you who is confused? Do you want to switch to the "strongly objective view", as implied by your "explanation" above?
gill1109 wrote:I am weakly objective as far as the connection between theory and experiment is concerned. Within theory, I just use mathematics. Within theory, interpretation is irrelevant.
Adenier wrote:Bell's Theorem was developed on the basis of considerations involving a linear combination of spin correlation functions, each of which has a distinct pair of arguments. The simultaneous presence of these different pairs of arguments in the same equation can be understood in two radically different ways: either as `strongly objective,' that is, all correlation functions pertain to the same set of particle pairs, or as `weakly objective,' that is, each correlation function pertains to a different set of particle pairs.
It is demonstrated that once this meaning is determined, no discrepancy appears between local realistic theories and quantum mechanics: the discrepancy in Bell's Theorem is due only to a meaningless comparison between a local realistic inequality written within the strongly objective interpretation (thus relevant to a single set of particle pairs) and a quantum mechanical prediction derived from a weakly objective interpretation (thus relevant to several different sets of particle pairs).
Michel, I think this could be a Eureka moment ...
minkwe wrote:[..]
Ultimately, the point stands. In the EPRB experiment being discussed by Bell, in his derivation of his original inequalities, the particles can not be measured more than once, therefore Watson's analysis of Bell's original paper is correct. Bell made a fatal error which invalidates his proof. Bell's original highly acclaimed 1964 paper is wrong! [..]
harry wrote:[..] A carpenter determines the average length of two similar beams as follows: He places them on top of each other, puts a mark halfway between the ends of the two beams as follows:
-------------- . . . . x
---------------------------------
Next he measures the length upto the mark of the top beam. I see him do that, and happen to know the lengths of the two beams.
So I calculate (230+240) / 2 = 235 cm and shout out that number to him. He shouts back: "Right - how did you know?"
My calculation should in theory give the same result as the measurement, despite the fact that there is not a 1-to-1 correspondence between the two.
Bell did similarly not stick to the experimental procedure for his derivation of what may be predicted as experimental outcomes. That doesn't mean that Bell didn't make a mistake, but it does mean that Bell did not make the striking mistake that Watson ascribes (or ascribed) to Bell.
Gill1109 wrote on Sat May 31, 2014Ben6993 wrote:
In other words, why cannot the hidden variables hide with the particle, wherever the particle is.
Because of Bell? Because, if you were right, then there would exist functions A(a, lambda) and ... and hence ... and hence your model
could not reproduce the singlet correlations.
But maybe you don't believe in the singlet correlations.
Or maybe it is OK by you that Alice's choice of a influences not only the lambda of her particle but also that of the other particke.
harry wrote:...
minkwe wrote:The set of values E(a,b), E(a,c) and E(b,c) does not tell you which interpretation to use. The "weakly objective" interpretation says the three expectation values represent separate measurements on three different sets of particles, The "strongly objective" view says they represent joint properties of a single set (aka population means).
minkwe wrote: [..]
So which interpretation do you use. Gill has already picked "weakly objective". Once you answer that, then we will discuss what the real issues are.
Ben6993 wrote:As I see it, Joy's analytic papers show the same cosine correlation as does QM. And in the those papers there is no influence of Alice on Bob or vice versa. The simulations, though, are different, and the meaning of zero outcomes has no consensus at present. If I understand it correctly, there is no loophole-free experimental evidence that the Bell experiment actually produces a cosine correlation? So, as yet, the cosine relationships of both QM and Joy are only achieved theoretically?
...
I had always assumed that the QM correlations were in the laboratory space. But if they are then they should be found (eventually) in the laboratory ....
The lack of consensus on simulating a 4xN table showing the cosine correlation doesn't give me confidence that QM correlations are observables. Do they only exist in an abstract (Hilbert) space?
gill1109 wrote:Bell's derivation does not assume that particles can be measured more than once. Bell shows that the assumption of a local hidden variables theory implies certain limits on correlations which can be observed in Nature, if Nature could be described by such a theory. There is no need to "rescue" his 1964 paper, but there certainly was possibility to remove ambiguities and sharpen the results. Bell's 1980 (?) "Bertlmann" paper already improves and sharpens Bell (1964) in numerous respects.
My own recent work is a further *strengthening* of Bell's. Bell's 1980 results, which improve on those from 1964, are a *corollary* of mine. I derive finite N probability bounds, but Bell only has infinite N limits.
A local hidden variables *theory* implies the mathematical existence, simultaneously, within the theory, of outcomes of different potential measurements. The measurements don't need to be *done*. They aren't *done* within the derivation of the famous inequalities.
gill1109 wrote:Ben, unfortunately, Joy's analytic papers contain (in the opinion of many readers) fatal errors. See for instance my http://arxiv.org/abs/1203.1504. So yes, he does get the cosine correlation, but he only gets it by using sloppy and ambiguous terminology and notation and changing definitions half-way through his derivation.
"Richard Gill's refutation is not a new critique. It is essentially the same as one of the critiques advanced by a certain Florin Moldoveanu in the fall last year to which Joy Christian has already replied. It originates from a misunderstanding of Joy's framework which admittedly is not very easy to understand, especially for those who have blinders of one kind or another.
Gill thinks Joy is using a convoluted more difficult method to do a calculation and prefers a different method which ultimately leads him to a different result, not realizing/understanding that the calculation method Joy used is demanded by his framework. This is hardly a serious critique, not unlike his failed critique of Hess and Phillip. He should at least have read Joy's response to Moldoveanu which he apparently did not, since he does not cite or mention it. It's been available since October 2011, one-month after Moldoveanu posted his critique.
I remember Florin came here to boast about his critique and I pointed out his misunderstanding at the time in this thread:
"... you are missing the point because Joy Christian is not using handedness as a convention but as the hidden variable itself."
This is the same error Gill has made. See section (II) of Joy's response to Moldoveanu."
Dear Joy,
I am sorry to hear about your plight with Gill. He is a third rate mind and I had the following experience with him. After Walter and I wrote the PNAS paper about the role of time, Gill wrote a number of counter-papers with Zeilinger and others stating repeatedly that time was irrelevant and that our papers were non-local because our probability density depended on the settings of both sides but was not a product density. Then after three years of harassing us (I had to block his e-mails), he had turned himself into a complete pretzel and had to admit that time plaid a role after all. By choosing suitable delay times between the experiments with different settings one can easily get a violation. He wrote a paper with Larsson that repeated that our work was still non-local, because we had a setting dependent probability density. They did not need it because their parameters $\Lambda_{A, C}$ depended on the settings of both stations. They ignored that this were, of course, exactly our time and setting dependent equipment parameters that did the job, and stated after their equation 6 that their dependence was permitted because of the involvement of time delays, and one just needed to remember were their dependence on both settings came from. This is in the literature and can be read by anyone and I would say that most serious people who understand the text would conclude that Gill showed definitely dishonest behavior and just adopted our (more general ) idea, and made it their own and stated that we were wrong.
Gill also e-mailed Walter that he should not work with me, because I was just an ignorant engineer (I am actually a member of both the National Academy of Science and Engineering and Walter knew that, of course).
It is terrible that a third rater like Gill can do so much damage. Mermin wrote an e-mail to Walter saying in essence that Gill is a card holding probabilist and must therefore know what he says.
This whole story reminds me of Goethe's word:
Those who exclusively for truth have yearned
and then discovered it
Have been since ages crucified and burned.
One might like to add that there always were those like Gill that tried to make innocence and honesty suffer.
Best wishes,
Karl
Dear Joy,
I fully agree with what you said below. Please also feel free to let anyone know what I think of Gill.
Best wishes, stay in touch,
Karl
Joy Christian wrote:His claim that my "analytic papers contain (in the opinion of many readers) fatal errors" is a slanderous lie --- a calculated attempt to mislead the physics community.
harry wrote:minkwe wrote: [..]
So which interpretation do you use. Gill has already picked "weakly objective". Once you answer that, then we will discuss what the real issues are.
I think that you project your thinking about "what the issue is" on what Watson wrote. It is clear to me and Gill that, as he put it, "Watson thought that the lambdas in Bell's famous expression had to be numbered 1, 2, ... and were subsequent lambdas occuring in one run after another of the experiment."
If you disagree, please state what you think how Watson interpreted Bell's derivation (it definitely was how I meant it when I first elaborated on Watson's argument!). And then hopefully Watson will clarify who understood his argument correctly.
Return to Sci.Physics.Foundations
Users browsing this forum: No registered users and 4 guests