Can 'signalling' make any physical sense?
The usual argument goes that QM demands giving up either locality or realism or both. Without getting into the statistics side of things which has been thrashed to death here, one real puzzle for me at least is the implicit notion of FTL 'signalling' as possible explanation for correlations if one retains realism but gives up non-locality. But how could any signalling between members of an 'entangled pair' plausibly work - even for time-like separation scenarios where causality is taken to hold?
Any physically real signal must surely embody thus require expenditure of energy-momentum by the signalling particle(s). Yet afaik there is never any talk of a concomitant back reaction on signalling particles that would alter said particle dynamics accordingly. Why is that? It seems especially troublesome to postulate 'signals' between photons - given photons are themselves normally the signalling medium.
Further, how could any signalling not, at least statistically, reasonably be allowed to propagate other than as a 'dumb' spherical wavefront? With the attendant rapid attenuation in intensity (at least as 1/r) surely rendering such useless as causative agent of QM correlations except over small spatial separations.
Apparently then one need implicitly assume a 'smart' signalling strategy where somehow each 'signal' knows exactly where to track the other particle. And further, since distance cannot, as per last point, be a factor, such 'signals' must not diminish with distance. Which implies propagation via some truly weird 1-D 'transmission-line' linking the entangled pair to any arbitrary separation. And presumably, additional to any signal(s) themselves, such trailed-out 'transmission-line' requires zero expenditure of energy-momentum resources to create! Or does one postulate a pre-existing, super dense network of 1-D 'transmission-lines' that somehow have no physical effect other than to efficiently and on demand transmit 'signals' between entangled particles?
Wow - just WOW! Am I being just too naive? Missing something obvious? Can someone point to where any of these evident issues have been sensibly addressed in the literature? If not, why is 'signalling' ever admitted as possibility at all?
Any physically real signal must surely embody thus require expenditure of energy-momentum by the signalling particle(s). Yet afaik there is never any talk of a concomitant back reaction on signalling particles that would alter said particle dynamics accordingly. Why is that? It seems especially troublesome to postulate 'signals' between photons - given photons are themselves normally the signalling medium.
Further, how could any signalling not, at least statistically, reasonably be allowed to propagate other than as a 'dumb' spherical wavefront? With the attendant rapid attenuation in intensity (at least as 1/r) surely rendering such useless as causative agent of QM correlations except over small spatial separations.
Apparently then one need implicitly assume a 'smart' signalling strategy where somehow each 'signal' knows exactly where to track the other particle. And further, since distance cannot, as per last point, be a factor, such 'signals' must not diminish with distance. Which implies propagation via some truly weird 1-D 'transmission-line' linking the entangled pair to any arbitrary separation. And presumably, additional to any signal(s) themselves, such trailed-out 'transmission-line' requires zero expenditure of energy-momentum resources to create! Or does one postulate a pre-existing, super dense network of 1-D 'transmission-lines' that somehow have no physical effect other than to efficiently and on demand transmit 'signals' between entangled particles?
Wow - just WOW! Am I being just too naive? Missing something obvious? Can someone point to where any of these evident issues have been sensibly addressed in the literature? If not, why is 'signalling' ever admitted as possibility at all?